Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (Einkorn) domestication: implications for the origin of agriculture.
نویسندگان
چکیده
The diploid wheat Triticum monococcum L. (einkorn) was among the first crops domesticated by humans in the Fertile Crescent 10,000 years ago. During the last 5,000 years, it was replaced by tetraploid and hexaploid wheats and largely forgotten by modern breeders. Einkorn germplasm is thus devoid of breeding bottlenecks and has therefore preserved in unfiltered form the full spectrum of genetic variation that was present during its domestication. We investigated haplotype variation among >12 million nucleotides sequenced at 18 loci across 321 wild and 92 domesticate T. monococcum lines. In contrast to previous studies of cereal domestication, we sampled hundreds of wild lines, rather than a few dozen. Unexpectedly, our broad sample of wild lines reveals that wild einkorn underwent a process of natural genetic differentiation, most likely an incipient speciation, prior to domestication. That natural differentiation was previously overlooked within wild einkorn, but it bears heavily upon inferences concerning the domestication process because it brought forth 3 genetically, and to some extent morphologically, distinct wild einkorn races that we designate here as alpha, beta, and gamma. Only one of those natural races, beta, was exploited by humans for domestication. Nucleotide diversity and haplotype diversity in domesticate einkorn is higher than in its wild sister group, the einkorn beta race, indicating that einkorn underwent no reduction of diversity during domestication. This is in contrast to findings from previous studies of domestication history among more intensely bred crop species. Taken together with archaeological findings from the Fertile Crescent, the data indicate that a specific wild einkorn race that arose without human intervention was subjected to multiple independent domestication events.
منابع مشابه
The Evaluation of Genomic Relationships and Diversity of Wild and Cultivated Wheats Possessing A Genome in Different Ploidy Levels Using SSR Markers
Genomic relationships and diversity of 37 wild and cultivated wheat (Triticum sp.) possessing A genome include four T. urartu (Au), thirteen wild einkorn (Am), four cultivated einkorn (Am), seven durum wheat (BBAuAu), three T. zhukovskyi (AtAtAmAmGG) and six com...
متن کاملAssessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance
Narrow genetic variability may lead to genetic vulnerability of field crops against biotic and abiotic stresses which can cause yield reduction. In this study a set of 37 wheat microsatellite markers linked with identified QTLs for salinity tolerance were used for the assessment of genetic diversity for salinity in 30 promising lines of hexaploid bread wheat (Triticum aestivum L.). A total of 4...
متن کاملKaryological studies in Triticum monococcum subsp. aegilopoides and Aegilops cylindrica species grown wild pairwise in west Iran
The wild-relative gene pools of wheat are a rich source of genetic variation for wheat improvement.Karyotypes of eight genotypes of Triticum monococcum subsp. aegilopoides and eight genotypes of Aegilops cylindrica,which grown wild next to each other in different regions in the west of Iran were studied. Root tips were treated in α-bromonaphthalene solution, fixed in chromic acid-formaldehyde f...
متن کاملAssessment of genetic diversity in Iranian wheat (Triticum aestivum L.) cultivars and lines using microsatellite markers
In this study, genetic diversity of 20 wheat genotypes was evaluated using 126 simple sequence repeats (SSR) alleles, covering all three wheat genomes. A total of 1557 allelic variants were detected for 126 SSR loci. The number of alleles per locus ranged from 4 to 19 and the allelic polymorphism information content (PIC) varied from 0.66 (Xgwm429) to 0.94 (Xgwm212 and Xgw...
متن کاملIndependent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes.
The origin of modern wheats involved alloploidization among related genomes. To determine if Aegilops speltoides was the donor of the B and G genomes in AABB and AAGG tetraploids, we used a 3-tiered approach. Using 70 amplified fragment length polymorphism (AFLP) loci, we sampled molecular diversity among 480 wheat lines from their natural habitats encompassing all S genome Aegilops, the putati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 24 12 شماره
صفحات -
تاریخ انتشار 2007